Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.336
Filtrar
1.
Mikrochim Acta ; 191(5): 239, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570399

RESUMO

To accurately detect tumor marker carbohydrate antigen 72-4 (CA72-4) of serum samples is of great significance for the early diagnosis of malignant tumors. In the present study, MnO2/hollow nanobox metal-organic framework (HNM)-AuPtPd nanocomposites were prepared via multi-step synthesis and superposition method and a series of characterizations were carried out. A highly sensitive immunosensor Ab/MnO2/HNM-AuPtPd/GCE based on the composite nanomaterial was further prepared and used to detect the tumor marker CA72-4. The constructed immunosensor achieved signal amplification by increasing the electrocatalytic activity to H2O2 by means of the synergistic effect of MnO2 ultra-thin nanosheets (MnO2 UNs) and HNM-AuPtPd. At the same time, the electrochemical properties of the immunosensor were analyzed using cyclic voltammetry, electrochemical impedance, amperometry (with the test voltage of -0.4 V), and differential pulse voltammetry. The experimental results showed that the MnO2/HNM-AuPtPd nanocomposites were successfully prepared, and the immunosensor Ab/MnO2/HNM-AuPtPd/GCE demonstrated an excellent electrochemical performance. The electrochemical immunosensor had the highest detection sensitivity under the optimal experimental conditions, such as incubation pH of 7.0, incubation time of 60 min, with the addition of 15 µL of H2O2, and in the concentration range 0.001-500 U/mL. It had a low detection limit of 1.78×10-5 U/mL (S/N = 3). Moreover, the serum sample recovery were in the range from 99.38 to 100.52%. This study provides a new method and experimental basis for the detection of tumor markers in clinical practice.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Técnicas Biossensoriais , Nanocompostos , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Compostos de Manganês/química , Óxidos/química , Imunoensaio , Nanocompostos/química
2.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
3.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612484

RESUMO

Twenty 2-(4-alkyloxyphenyl)-imidazolines and 2-(4-alkyloxyphenyl)-imidazoles were synthesized, with the former being synthesized in two steps by using MW and ultrasonication energy, resulting in good to excellent yields. Imidazoles were obtained in moderate yields by oxidizing imidazolines with MnO2 and MW energy. In response to the urgent need to treat neglected tropical diseases, a set of 2-(4-alkyloxyphenyl)- imidazolines and imidazoles was tested in vitro on Leishmania mexicana and Trypanosoma cruzi. The leishmanicidal activity of ten compounds was evaluated, showing an IC50 < 10 µg/mL. Among these compounds, 27-31 were the most active, with IC50 values < 1 µg/mL (similar to the reference drugs). In the evaluation on epimastigotes of T. cruzi, only 30 and 36 reached an IC50 < 1 µg/mL, showing better inhibition than both reference drugs. However, compounds 29, 33, and 35 also demonstrated attractive trypanocidal activities, with IC50 values < 10 µg/mL, similar to the values for benznidazole and nifurtimox.


Assuntos
Antiprotozoários , Doença de Chagas , Imidazolinas , Leishmania mexicana , Trypanosoma cruzi , Humanos , Imidazóis/farmacologia , Compostos de Manganês , Óxidos , Antiprotozoários/farmacologia
4.
Anal Chim Acta ; 1303: 342520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609255

RESUMO

BACKGROUND: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally. Electrochemiluminescence (ECL) has gained widespread research attention due to its high sensitivity, ease of operation, effective spatiotemporal control, and close to zero background signal. RESULTS: In this work, a sandwich-type ECL immunosensor for detecting CD44 was constructed using luminol as a luminophore. In this sensing platform, bimetallic MOFs (Pd@FeNi-MIL-88B) loaded with palladium nanoparticles (Pd NPs) were used as a novel enzyme mimic, exhibiting excellent catalytic performance towards the electroreduction of H2O2. The hybrids provided a strong support platform for luminol and antibodies, significantly enhancing the initial ECL signal of luminol. Subsequently, core-shell Au@MnO2 nanocomposites were synthesised by gold nanoparticles (Au NPs) encapsulated in manganese dioxide (MnO2) thin layers, as labels. In the luminol/H2O2 system, Au@MnO2 exhibited strong light absorption in the broad UV-vis spectrum, similar to the black body effect, and the scavenging effect of Mn2+ on O2•-, which achieved the dual-quenching of ECL signal. Under the optimal experimental conditions, the immunosensor demonstrated a detection range of 0.1 pg mL-1 - 100 ng mL-1, with a detection limit of 0.069 pg mL-1. SIGNIFICANCE: Based on Pd@FeNi-MIL-88B nanoenzymes and Au@MnO2 nanocomposites, a dual-quenching sandwich-type ECL immunosensor for the detection of CD44 was constructed. The proposed immunosensor exhibited excellent reproducibility, stability, selectivity, and sensitivity, and provided a valuable analytical strategy and technical platform for the accurate detection of disease biomarkers, and opened up potential application prospects for early clinical treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , Compostos de Manganês , Ouro , Peróxido de Hidrogênio , Luminol , Reprodutibilidade dos Testes , Imunoensaio , Óxidos , Paládio , Receptores de Hialuronatos
5.
Anal Chim Acta ; 1303: 342521, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609263

RESUMO

BACKGROUND: Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsatisfactory diagnostic and therapeutic efficiency. Herein, a dual biomarkers-activatable facile hollow mesoporous MnO2 (H-MnO2)-based theranostic nanoplatform, DNAzyme@H-MnO2-MUC1 aptamer (DHMM), was constructed for the simultaneous multi-site diagnosis and multiple treatment of breast cancer. RESULTS: The DHMM acted as an integrated diagnostic and therapeutic nanoplatform that realizes multi-site fluorescence imaging-guided high-efficient photothermal/chemodynamic/gene synergistic therapy (PTT/CDT/GT) for breast cancer. The H-MnO2 exhibits high loading capacity for Cy5-MUC1 aptamer (3.05 pmoL µg-1) and FAM-DNAzyme (3.37 pmoL µg-1), and excellent quenching for the probes. In the presence of MUC1 on the cell membrane and GSH in the cytoplasm, Cy5-MUC1 aptamer and FAM-DNAzyme was activated triggering dual-channel fluorescence imaging at different sites. Moreover, the self-supplied Mn2+ was further supplied as DNAzyme cofactors to catalytic cleavage intracellular EGR-1 mRNA for high-efficient GT and stimulated the Fenton-like reaction for CDT. The H-MnO2 also showcases a favorable photothermal performance with a photothermal conversion efficiency of 44.16%, which ultimately contributes to multi-site fluorescence imaging-guided synergistic treatment with an apoptosis rate of 71.82%. SIGNIFICANCE: This dual biomarker-activatable multiple therapeutic nanoplatform was realized multi-site fluorescence imaging-guided PTT/CDT/GT combination therapy for breast cancer with higher specificity and efficiency, which provides a promising theranostic nanoplatform for the precision and efficiency of breast cancer treatment.


Assuntos
Carbocianinas , DNA Catalítico , Neoplasias , Medicina de Precisão , Compostos de Manganês , Óxidos , Imagem Óptica , Biomarcadores
6.
Water Environ Res ; 96(4): e11027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659148

RESUMO

In this study, we synthesized magnetic MnFe2O4/ZIF-67 composite catalysts using a straightforward method, yielding catalysts that exhibited outstanding performance in catalyzing the ozonation of vanillin. This exceptional catalytic efficiency arose from the synergistic interplay between MnFe2O4 and ZIF-67. Comprehensive characterization via x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS) confirmed that the incorporation of MnFe2O4 promoted the creation of oxygen vacancies, resulting in an increased presence of l adsorbed oxygen (Oads) and the generation of additional ·OH groups on the catalyst surface. Utilizing ZIF-67 as the carrier markedly enhanced the specific surface area of the catalyst, augmenting the exposure of active sites, thus improving the degradation efficiency and reducing the energy consumption. The effects of different experimental parameters (catalyst type, initial vanillin concentration, ozone dosage, initial pH value, and catalyst dosage) were also investigated, and the optimal experimental parameters (300 mg/L1.0-MnFe2O4/ZIF-67, vanillin concentration = 250 mg/L, O3 concentration = 12 mg/min, pH = 7) were obtained. The vanillin removal efficiency of MnFe2O4/ZIF-67 was increased from 74.95% to 99.54% after 30 min of reaction, and the magnetic separation of MnFe2O4/ZIF-67 was easy to be recycled and stable, and the vanillin removal efficiency of MnFe2O4/ZIF-67 was only decreased by about 8.92% after 5 cycles. Additionally, we delved into the synergistic effects and catalytic mechanism of the catalysts through kinetic fitting, reactive oxygen quenching experiments, and electron transfer analysis. This multifaceted approach provides a comprehensive understanding of the enhanced ozonation process catalyzed by MnFe2O4/ZIF-67 composite catalysts, shedding light on their potential applications in advanced oxidation processes. PRACTITIONER POINTS: A stable and recyclable magnetic composite MnFe2O4/ZIF-67 catalyst was synthesized through a simple method. The synergistic effect and catalytic mechanism of the MnFe2O4/ZIF-67 catalyst were comprehensively analyzed and discussed. A kinetic model for the catalytic ozone oxidation of vanillin was introduced, providing valuable insights into the reaction dynamics.


Assuntos
Benzaldeídos , Compostos Férricos , Imidazóis , Ozônio , Ozônio/química , Benzaldeídos/química , Catálise , Compostos Férricos/química , Compostos de Manganês/química , Zeolitas/química , Poluentes Químicos da Água/química
7.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598997

RESUMO

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Assuntos
Carbonato de Cálcio , Glucose Oxidase , Compostos de Manganês , Óxidos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Óxidos/química , Óxidos/farmacologia , Humanos , Animais , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Povidona/química , Povidona/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Propriedades de Superfície , Camundongos Endogâmicos BALB C
8.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1138-1156, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658154

RESUMO

Manganese (Mn) is an essential element for plants and plays a role in various metabolic processes. However, excess manganese can be toxic to plants. This study aimed to analyze the changes in various physiological activities and the transcriptome of Arabidopsis under different treatments: 1 mmol/L MnCl2 treatment for 1 day or 3 days, and 1 day of recovery on MS medium after 3 days of MnCl2 treatment. During the recovery phase, minor yellowing symptoms appeared on the leaves of Arabidopsis, and the content of chlorophyll and carotenoid decreased significantly, but the content of malondialdehyde and soluble sugar increased rapidly. Transcriptome sequencing data shows that the expression patterns of differentially expressed genes exhibit three major models: initial response model, later response model, recovery response model. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis identified several affected metabolic pathways, including plant hormone signal transduction mitosolysis activates protein kinase (MAPK) phytohormone signaling, phenylpropanoid biosynthesis, ATP binding cassette transporters (ABC transporter), and glycosphingolipid biosynthesis. Differential expressed genes (DEGs) involved in phenylpropanoid biosynthesis, ABC transporter, and glycosphingolipid biosynthesis, were identified. Sixteen randomly selected DEGs were validated through qRT-PCR and showed consistent results with RNA-seq data. Our findings suggest that the phenylpropanoid metabolic pathway is activated to scavenge reactive oxygen species, the regulation of ABC transporter improves Mn transport, and the adjustment of cell membrane lipid composition occurs through glycerophospholipid metabolism to adapt to Mn stress in plants. This study provides new insights into the molecular response of plants to Mn stress and recovery, as well as theoretical cues for cultivating Mn-resistant plant varieties.


Assuntos
Arabidopsis , Manganês , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Manganês/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Cloretos/metabolismo , Compostos de Manganês/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo
9.
Anal Chim Acta ; 1299: 342432, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499419

RESUMO

Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.


Assuntos
Neoplasias , Óxidos , Compostos de Manganês , Corantes Fluorescentes , Reprodutibilidade dos Testes , Biomimética , DNA/genética , Limite de Detecção
10.
Anal Chim Acta ; 1299: 342453, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499424

RESUMO

BACKGROUND: The development of wearable detection devices that can achieve noninvasive, on-site and real-time monitoring of sweat metabolites is of great demand and practical significance for point-of-care testing and healthcare monitoring. Monitoring uric acid (UA) content in sweat provides a simple and promising way to reduce the risk of gout and hyperuricemia. Traditional bioenzyme based UA assays suffer from high cost, poor stability, inconvenience for storage and easy deactivation of bioenzymes. Wearable microfluidic colorimetric detection device for sweat UA detection has not been reported. The development of novel wearable microfluidic colorimetric detection chip with no requirement of bioenzymes for sweat UA detection is of great importance for health care monitoring. RESULTS: Firstly, Co@MnO2 nanozyme with high oxidase-like activity was synthesized and characterized. Co@MnO2 can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) directly to generate blue-green colored ox-TMB. Green colored 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical (ABTS·+) was produced by the oxidation of ABTS by potassium persulfate. UA exhibits distinct quenching effect on Co@MnO2 catalyzed TMB colorimetric reaction system and ABTS·+ based colorimetric system, leading to obvious color fading of the two colorimetric systems. Then, a flexible microfluidic colorimetric detection chip for UA detection was fabricated by assembling Co@MnO2/TMB modified paper chips and ABTS·+ modified paper chips into a polydimethylsiloxane (PDMS) microfluidic chip. The fabricated microfluidic colorimetric detection chip exhibits good linear relationship for sweat UA detection. The linear range is from 20 to 200 µmol/L with detection limit as low as 6.6 µmol/L. Good results were obtained for the detection of UA in actual sweat from three volunteers. SIGNIFICANCE: This work provides two bio-enzyme free colorimetric detection systems for UA detection. Furthermore, a simple, low-cost and selective flexible wearable microfluidic colorimetric detection chip was fabricated for noninvasive and on-site detection of sweat UA, which holds great application potential for personal health monitoring and point-of-care testing.


Assuntos
Benzidinas , Benzotiazóis , Ácidos Sulfônicos , Suor , Ácido Úrico , Humanos , Microfluídica , Colorimetria/métodos , Compostos de Manganês , Óxidos , Catálise
11.
J Environ Sci (China) ; 142: 43-56, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527895

RESUMO

Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides. Herein, K ions were introduced into manganese oxides by different methods to improve the degradation efficiency of toluene. The results of activity experiments indicated that KMnO4-HT (HT: Hydrothermal method) exhibited outstanding low-temperature catalytic activity, and 90% conversion of toluene can be achieved at 243°C, which was 41°C and 43°C lower than that of KNO3-HT and Mn-HT, respectively. The largest specific surface area was observed on KMnO4-HT, facilitating the adsorption of toluene. The formation of cryptomelane structure over KMnO4-HT could contribute to higher content of Mn3+ and lattice oxygen (Olatt), excellent low-temperature reducibility, and high oxygen mobility, which could increase the catalytic performance. Furthermore, two distinct degradation pathways were inferred. Pathway Ⅰ (KMnO4-HT): toluene → benzyl → benzoic acid → carbonate → CO2 and H2O; Pathway ⅠⅠ (Mn-HT): toluene → benzyl alcohol → benzoic acid → phenol → maleic anhydride → CO2 and H2O. Fewer intermediates were detected on KMnO4-HT, indicating its stronger oxidation capacity of toluene, which was originated from the doping of K+ and the interaction between KOMn. More intermediates were observed on Mn-HT, which can be attributed to the weaker oxidation ability of pure Mn. The results indicated that the doping of K+ can improve the catalytic oxidation capacity of toluene, resulting in promoted degradation of intermediates during the oxidation of toluene.


Assuntos
Compostos de Manganês , Manganês , Tolueno , Manganês/química , Oxigênio/química , Dióxido de Carbono , Óxidos/química , Oxirredução , Catálise , Ácido Benzoico
12.
Environ Sci Technol ; 58(13): 5832-5843, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511412

RESUMO

Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.


Assuntos
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotossensibilizantes , Compostos de Manganês/química , Oxirredução , Água/química
13.
Toxicol Ind Health ; 40(5): 244-253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518383

RESUMO

With the widespread use of manganese dioxide nanoparticles (nano MnO2), health hazards have also emerged. The inflammatory damage of brain tissues could result from nano MnO2, in which the underlying mechanism is still unclear. During this study, we aimed to investigate the role of ROS-mediated p38 MAPK pathway in nano MnO2-induced inflammatory response in BV2 microglial cells. The inflammatory injury model was established by treating BV2 cells with 2.5, 5.0, and 10.0 µg/mL nano MnO2 suspensions for 12 h. Then, the reactive oxygen species (ROS) scavenger (20 nM N-acetylcysteine, NAC) and the p38 MAPK pathway inhibitor (10 µM SB203580) were used to clarify the role of ROS and the p38 MAPK pathway in nano MnO2-induced inflammatory lesions in BV2 cells. The results indicated that nano MnO2 enhanced the expression of pro-inflammatory cytokines IL-1ß and TNF-α, elevated intracellular ROS levels and activated the p38 MAPK pathway in BV2 cells. Controlling intracellular ROS levels with NAC inhibited p38 MAPK pathway activation and attenuated the inflammatory response induced by nano MnO2. Furthermore, inhibition of the p38 MAPK pathway with SB203580 led to a decrease in the production of inflammatory factors (IL-1ß and TNF-α) in BV2 cells. In summary, nano MnO2 can induce inflammatory damage by increasing intracellular ROS levels and further activating the p38 MAPK pathway in BV2 microglial cells.


Assuntos
Compostos de Manganês , Microglia , Óxidos , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular
14.
ACS Appl Mater Interfaces ; 16(14): 17120-17128, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554083

RESUMO

Cell-based therapies offer tremendous potential for skin flap regeneration. However, the hostile microenvironment of the injured tissue adversely affects the longevity and paracrine effects of the implanted cells, severely reducing their therapeutic effectiveness. Here, an injectable hydrogel (nGk) with reactive oxygen species (ROS) scavenging capability, which can amplify the cell viability and functions of encapsulated mesenchymal stem cells (MSCs), is employed to promote skin flap repair. nGk is formulated by dispersing manganese dioxide nanoparticles (MnO2 NPs) in a gelatin/κ-carrageenan hydrogel, which exhibits satisfactory injectable properties and undergoes a sol-gel phase transition at around 40 °C, leading to the formation of a solid gel at physiological temperature. MnO2 NPs enhance the mechanical properties of the hydrogel and give it the ability to scavenge ROS, thus providing a cell-protective system for MSCs. Cell culture studies show that nGk can mitigate the oxidative stress, improve cell viability, and boost stem cell paracrine function to promote angiogenesis. Furthermore, MSC-loaded nGk (nGk@MSCs) can improve the survival of skin flaps by promoting angiogenesis, reducing inflammatory reactions, and attenuating necrosis, providing an effective approach for tissue regeneration. Collectively, injectable nGk has substantial potential to enhance the therapeutic benefits of MSCs, making it a valuable delivery system for cell-based therapies.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Compostos de Manganês/farmacologia , Óxidos/farmacologia
15.
J Colloid Interface Sci ; 665: 188-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522159

RESUMO

Anti-tumor therapies reliant on reactive oxygen species (ROS) as primary therapeutic agents face challenges due to a limited oxygen substrate. Photodynamic therapy (PDT) is particularly hindered by inherent hypoxia, while chemodynamic therapy (CDT) encounters obstacles from insufficient endogenous hydrogen peroxide (H2O2) levels. In this study, we engineered biodegradable tumor microenvironment (TME)-activated hollow mesoporous MnO2-based nanotheranostic agents, designated as HAMnO2A. This construct entails loading artemisinin (ART) into the cavity and surface modification with a mussel-inspired polymer ligand, namely hyaluronic acid-linked poly(ethylene glycol)-diethylenetriamine-conjugated (3,4-dihydroxyphenyl) acetic acid, and the photosensitizer Chlorin e6 (mPEG-HA-Dien-(Dhpa/Ce6)), facilitating dual-modal imaging-guided PDT/CDT synergistic therapy. In vitro experimentation revealed that HAMnO2A exhibited ideal physiological stability and enhanced cellular uptake capability via CD44-mediated endocytosis. Additionally, it was demonstrated that accelerated endo-lysosomal escape through the pH-dependent protonation of Dien. Within the acidic and highly glutathione (GSH)-rich TME, the active component of HAMnO2A, MnO2, underwent decomposition, liberating oxygen and releasing both Mn2+ and ART. This process alleviates hypoxia within the tumor region and initiates a Fenton-like reaction through the combination of ART and Mn2+, thereby enhancing the effectiveness of PDT and CDT by generating increased singlet oxygen (1O2) and hydroxyl radicals (•OH). Moreover, the presence of Mn2+ ions enabled the activation of T1-weighted magnetic resonance imaging. In vivo findings further validated that HAMnO2A displayed meaningful tumor-targeting capabilities, prolonged circulation time in the bloodstream, and outstanding efficacy in restraining tumor growth while inducing minimal damage to normal tissues. Hence, this nanoplatform serves as an efficient all-in-one solution by facilitating the integration of multiple functions, ultimately enhancing the effectiveness of tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Microambiente Tumoral , Nanomedicina Teranóstica/métodos , Peróxido de Hidrogênio/química , Óxidos/química , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
16.
Mikrochim Acta ; 191(4): 213, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512701

RESUMO

Strontium-90 (90Sr) is a major radioactive component that has attracted great attention, but its detection remains challenging since there are no specific energy rays indicative of its presence. Herein, a biosensor that is capable of rapidly detecting Sr2+ ions is demonstrated. Simple colorimetric method for sensitive detection of Sr2+ with the help of single-stranded DNA was developed by preparing MnO2 nanorods as oxidase mimic catalysis 3,3',5,5'-tetramethylbenzidine (TMB). Under weakly acidic conditions, MnO2 exhibited a strong oxidase-mimicking activity to oxidize colorless TMB into blue oxidation products (oxTMB) with discernible absorbance signals. Nevertheless, the introduction of a guanine-rich DNA aptamer inhibited MnO2-mediated TMB oxidation and reduced oxTMB formation, resulting in blue fading and diminished absorbance. Upon the addition of strontium ions to the system, the aptamers formed a stable G-quadruplex structure with strontium ions, thereby restoring the oxidase-mimicking activity of MnO2. Under the best experimental conditions, the absorbance exhibits a linear relationship with the Sr2+ concentration within the range 0.01-200 µM, with a limit of detection of 0.0028 µM. When the concentration of Sr2+ from 10-8 to 10-6 mol L-1, a distinct color change gradient could be observed in paper-based sensor. We successfully applied this approach to determine Sr2+ in natural water samples, obtaining recoveries ranging from 97.6 to 103% with a relative standard deviation of less than 5%. By providing technical solutions for detection, our work contributed to the effective monitoring of transportation of radioactive Sr in the environment.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Nanotubos , Oxirredutases/química , Óxidos/química , Colorimetria/métodos , Compostos de Manganês/química , Estrôncio , DNA , Técnicas Biossensoriais/métodos
17.
J Environ Manage ; 356: 120604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518501

RESUMO

This study aimed to explore the co-application of MnSO4 (Mn) and biochar (BC) in nitrogen conversion during the composting process. A 70-day aerobic composting was conducted using swine slurry, supplemented with different levels of Mn (0, 0.25%, and 0.5%) and 5% BC. The results demonstrated that the treatment with 0.5MnBC had the highest levels of NH4+-N (3.07 g kg-1), TKN (29.90 g kg-1), and NO3--N (1.94 g kg-1) among all treatments. Additionally, the 0.5MnBC treatment demonstrated higher urease, protease, nitrate reductase, and nitrite reductase activities than the other treatments, with the peak values of 18.12, 6.96, 3.57, and 15.14 mg g-1 d-1, respectively. The addition of Mn2+ increased the total organic nitrogen content by 29.59%-47.82%, the acid hydrolyzed ammonia nitrogen (AN) content by 13.84%-57.86% and the amino acid nitrogen (AAN) content by 55.38%-77.83%. The richness of Chloroflexi and Ascomycota was also enhanced by the simultaneous application of BC and Mn. Structural equation modeling analysis showed that Mn2+ can promote the conversion of Hydrolyzed Unknown Nitrogen (HUN) into AAN, and there is a positive association between urease and NH4+-N according to redundancy analysis. Firmicutes, Basidiomycota, and Mortierellomycota showed significant positive correlations with ASN, AN, and NH4+-N, indicating their crucial roles in nitrogen conversion. This study sheds light on promoting nitrogen conversion in swine slurry composting through the co-application of biochar and manganese sulfate.


Assuntos
Compostos de Manganês , Nitrogênio , Solo , Sulfatos , Animais , Suínos , Nitrogênio/metabolismo , Urease , Esterco , Carvão Vegetal
18.
J Hazard Mater ; 469: 134095, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521035

RESUMO

Biogenic manganese oxides (BioMnOx) produced by Mn(II)-oxidizing bacteria (MnOB) have garnered considerable attention for their exceptional adsorption and oxidation capabilities. However, previous studies have predominantly focused on the role of BioMnOx, neglecting substantial investigation into MnOB themselves. Meanwhile, whether the xenobiotics could support the growth of MnOB as the sole carbon source remains uncertain. In this study, we isolated a strain termed Pseudomonas sp. AN-1, capable of utilizing phenol as the sole carbon source. The degradation of phenol took precedence over the accumulation of BioMnOx. In the presence of 100 mg L-1 phenol and 100 µM Mn(II), phenol was entirely degraded within 20 h, while Mn(II) was completely oxidized within 30 h. However, at the higher phenol concentration (500 mg L-1), phenol degradation reduced to 32% and Mn(II) oxidation did not appear to occur. TOC determination confirmed the ability of strain AN-1 to mineralize phenol. Based on the genomic and proteomics studies, the Mn(II) oxidation and phenol mineralization mechanism of strain AN-1 was further confirmed. Proteome analysis revealed down-regulation of proteins associated with Mn(II) oxidation, including MnxG and McoA, with increasing phenol concentration. Notably, this study observed for the first time that the expression of Mn(II) oxidation proteins is modulated by the concentration of carbon sources. This work provides new insight into the interaction between xenobiotics and MnOB, thus revealing the complexity of biogeochemical cycles of Mn and C.


Assuntos
Fenol , Pseudomonas , Fenol/metabolismo , Pseudomonas/metabolismo , Xenobióticos/metabolismo , Óxidos/metabolismo , Oxirredução , Compostos de Manganês/metabolismo , Fenóis/metabolismo , Bactérias/metabolismo , Carbono/metabolismo
19.
Environ Pollut ; 347: 123711, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447654

RESUMO

Nano-scale Mn oxides can act as effective stabilizers for Tl in soil and sediments. Nevertheless, the comprehensive analysis of the capacity of MnO2 to immobilize Tl in such porous media has not been systematically explored. Therefore, this study investigates the impact of γ-MnO2, a model functional nanomaterial for remediation, on the mobility of Tl in a water-saturated quartz sand-packed column. The mechanisms involved are further elucidated based on the adsorption and aggregation kinetics of γ-MnO2. The results indicate that higher ionic strength (IS) and the presence of ion Ca(II) promote the aggregation of γ-MnO2, resulting from the reduced electrostatic repulsion between particles. Conversely, an increase in pH inhibits aggregation due to enhanced interaction energy. γ-MnO2 significantly influences Tl retention and mobility, with a substantial fraction of γ-MnO2-bound Tl transported through the column. This might be attributed to the high affinity of γ-MnO2 for Tl through ion exchange reactions and precipitation at the surface of γ-MnO2. The mobility of Tl in the sand column is influenced by the γ-MnO2 colloids, exhibiting either inhibition or promotion depending on the pH, IS, and cation type of the solution. In solutions with higher IS and Ca(II), the mobility of Tl decreases as γ-MnO2 colloids tend to aggregate, strain, and block, facilitating colloidal Tl retention in porous media. Although higher pH reduces the mobility of individual Tl, it promotes the mobility of γ-MnO2 colloids, facilitating a substantial fraction of colloidal-form Tl. Consequently, the optimal conditions for stabilizing Tl by γ-MnO2 involve either high IS and low pH or the presence of competitive cations (e.g., Ca(II)). These findings provide new insights into Tl immobilization using MnO2- and Mn oxide-based functional materials, offering potential applications in the remediation of Tl contamination in soil and groundwater.


Assuntos
Nanopartículas , Água , Óxidos , Areia , Tálio , Porosidade , Compostos de Manganês , Coloides , Solo
20.
Methods Enzymol ; 695: 159-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521584

RESUMO

DNA secondary structures are essential elements of the genomic landscape, playing a critical role in regulating various cellular processes. These structures refer to G-quadruplexes, cruciforms, Z-DNA or H-DNA structures, amongst others (collectively called 'non-B DNA'), which DNA molecules can adopt beyond the B conformation. DNA secondary structures have significant biological roles, and their landscape is dynamic and can rearrange due to various factors, including changes in cellular conditions, temperature, and DNA-binding proteins. Understanding this dynamic nature is crucial for unraveling their functions in cellular processes. Detecting DNA secondary structures remains a challenge. Conventional methods, such as gel electrophoresis and chemical probing, have limitations in terms of sensitivity and specificity. Emerging techniques, including next-generation sequencing and single-molecule approaches, offer promise but face challenges since these techniques are mostly limited to only one type of secondary structure. Here we describe an updated version of a technique permanganate/S1 nuclease footprinting, which uses potassium permanganate to trap single-stranded DNA regions as found in many non-B structures, in combination with S1 nuclease digest and adapter ligation to detect genome-wide non-B formation. To overcome technical hurdles, we combined this method with direct adapter ligation and sequencing (PDAL-Seq). Furthermore, we established a user-friendly pipeline available on Galaxy to standardize PDAL-Seq data analysis. This optimized method allows the analysis of many types of DNA secondary structures that form in a living cell and will advance our knowledge of their roles in health and disease.


Assuntos
DNA , Quadruplex G , DNA/química , Óxidos , Compostos de Manganês , Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...